A Jeu De Taquin Theory for Increasing Tableaux, with Applications to K-theoretic Schubert Calculus

نویسنده

  • HUGH THOMAS
چکیده

We introduce a theory of jeu de taquin for increasing tableaux, extending fundamental work of [Schützenberger ’77] for standard Young tableaux. We apply this to give a new combinatorial rule for the K-theory Schubert calculus of Grassmannians via K-theoretic jeu de taquin, providing an alternative to the rules of [Buch ’02] and others. This rule naturally generalizes to give a conjectural root-system uniform rule for any minuscule flag variety G/P, extending [Thomas-Yong ’06]. We also present analogues of results of Fomin, Haiman, Schensted and Schützenberger.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theoretic Schubert calculus for OG.n; 2nC 1/ and jeu de taquin for shifted increasing tableaux

We present a proof of a Littlewood–Richardson rule for the K-theory of odd orthogonal Grassmannians OG.n; 2n C 1/, as conjectured by Thomas–Yong (2009). Specifically, we prove that rectification using the jeu de taquin for increasing shifted tableaux introduced there, is well-defined and gives rise to an associative product. Recently, Buch–Ravikumar (2012) proved a Pieri rule for OG.n; 2nC1/ th...

متن کامل

Promotion of Increasing Tableaux: Frames and Homomesies

A key fact about M.-P. Schützenberger’s (1972) promotion operator on rectangular standard Young tableaux is that iterating promotion once per entry recovers the original tableau. For tableaux with strictly increasing rows and columns, H. Thomas and A. Yong (2009) introduced a theory of K-jeu de taquin with applications to K-theoretic Schubert calculus. The author (2014) studied a K-promotion op...

متن کامل

K-theory of Minuscule Varieties

Based on Thomas and Yong’s K-theoretic jeu de taquin algorithm, we prove a uniform Littlewood-Richardson rule for the K-theoretic Schubert structure constants of all minuscule homogeneous spaces. Our formula is new in all types. For the main examples of Grassmannians of type A and maximal orthogonal Grassmannians it has the advantage that the tableaux to be counted can be recognized without ref...

متن کامل

Monodromy and K-theory of Schubert Curves via Generalized Jeu de Taquin

Schubert curves are the spaces of solutions to certain one-dimensional Schubert problems involving žags osculating the rational normal curve. e real locus of a Schubert curve is known to be a natural covering space of RP1, so its real geometry is fully characterized by the monodromy of the cover. It is also possible, using K-theoretic Schubert calculus, to relate the real locus to the overall (...

متن کامل

Growth diagrams for the Schubert multiplication

We present a partial generalization to Schubert calculus on flag varieties of the classical Littlewood-Richardson rule, in its version based on Schützenberger’s jeu de taquin. More precisely, we describe certain structure constants expressing the product of a Schubert and a Schur polynomial. We use a generalization of Fomin’s growth diagrams (for chains in Young’s lattice of partitions) to chai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007